5g rfテストサービスへの対応

2021年4月19日开着,vineet pancholi.,Semiconductor Story
シェアする:

高周波(rf)规格でののの5gのの采が急速ににますますます[1]。ここ1年〜1年度で,市场に导入されたたへ注目度が高度てきたた.RFエコシステムのアプリケーションアプリケーションは,携帯电阻,Wi-Fi,车辆饰品,モノモノインターネット(IOT),位置情やなどがあります。Wi-Fiや携帯电视サービスサービスデータ量がですが,物质ののはががれのたデータ量で済む済むもあります。

4gモバイルネットワークのユニットボリュームにメトリックメトリックて,図1のユニットボリュームの頼レベル,5g规格のをを可口な市场全全

図1:5g制品の成长予测出典:IOTビジネスニュース

5G仕様に合わせて製品を開発している世界中の地域では、このような量を示す類似のプロットが数多く存在します。5G RFユニット量の増加は、テストでのユニット量の増加につながると予想されます。ユーザー機器の導入に先立って、インフラストラクチャーの開発と展開が行われると予想されます。図2に示すように、代表的な携帯電話アプリケーションには、携帯電話タワー付きの基地局が含まれており、それぞれがサービスエリア内の複数のユーザーの携帯電話に対応しています。

Figure 2:Key ingredients of a two-way RF communication block diagram include an application processor (AP), baseband integrated circuit (IC), and radiofrequency integrated circuit (RFIC).

由于基站suppor的覆盖范围t multiple user equipment, the RF power requirement is higher relative to the user equipment. Base stations are powered by plug-in power, while the user equipment is designed to be power efficient because they are mobile and battery-powered. Since the magnitude of data downloaded on a typical cellphone is a couple of orders of magnitude higher than the data uploaded, the number of receive channels is typically larger than the number of transmit channels. Concepts like multiple-input, multiple-output (MIMO), and carrier aggregation (CA) [1] are employed at a protocol layer to increase the effective bandwidth. Receive channels employ diversity [1] to improve spatial performance. Even though these concepts are not the direct focus of this article, product architecture and design do have an impact on test requirements and test methodology. WiFi technology-based applications are typically within the home/office. Their maximum RF power is limited, yet the dynamic range is not, and their bandwidth is typically higher relative to cellphones.

The recent introduction of the 5G 3GPP standard [1], identifies carrier frequencies in two separate carrier frequency spectrums. As shown in Figure 3, FR1 carrier frequencies are in the 410 MHz to 7.125 GHz range and the FR2 carrier frequencies are in the 24 GHz to 52 GHz range. The allowable bandwidths exceed 100 MHz up to 2 GHz. The sub-carrier spacing is compacting and hence the need for tighter constraints for phase noise and gain flatness.

Figure 3:The 5G carrier frequencies are defined in the 3GPP specifications [1].

5G 新無線 (NR) 変調方式

There are two 5G NR signal modulation schemes – cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) [1] (Figure 4).

Figure 4:在Adautest V93K上捕获了256正交幅度调制(256-QAM)5G NR星座曲线图。

CP-OFDM is for downlink (D/L), with quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM. It has high spectral efficiencies and is compatible with MIMO and 4G LTE definitions. DFT-S-OFDM is for uplink (U/L), with π/2- binary phase-shift keying (BPSK), 16-QAM, 64-QAM, and 256-QAM. It has a more complex implementation and has less flexible resource assignments compared to CP-OFDM and it is not used in combination with MIMO. The five sub-carrier spacings for 5G NR are between 15 kHz to 240 kHz. Figure 4 shows a 256-QAM plot.

5g rf制品とrfio

现代直接和外差转换器架构[2]具有数字基带I / O.数字基带将数据馈送到数字到模拟转换器(DAC),该转换器(DAC)创建模拟同步和正交(I / Q)波形。当与本地振荡器(LO)信号混合时,这些波形,上转换数据以产生被发送到接收器(Rx)的调制中频(IF)或RF信号。信号传输在同轴屏蔽电缆上或空气中发生。在传输之前,特别是当它在空中时,信号可能需要信号放大。而且,接收器可以在为下转换提供信号之前要求接收的信号放大。下转换信号被馈送到模数转换器(ADC),该模数转换器(ADC)将信号转换为数字基带进行数字基带以便由应用处理器处理。图5显示了这些步骤。

图5:Simplified transmitter (Tx) and Rx RF chain blocks.

集成设备制造商(IDM)客户为组装和测试服务带来各种RF产品。这包括,并且不限于收发器,低噪声放大器(LNA),功率放大器(PA),数字步衰减器(DSA),滤波器和混频器。根据目标应用程序,RF输入和输出通道的数量可能是不同的。带宽,相位噪声,互调失真(IMD),相位和幅度分辨率/精度以及其他测试要求也可能变化。

用于生产测试的测试设备(DUT)发射器特性规范包括传输功率和RF频谱排放(占用带宽,带宽,带宽排放,相邻信道泄漏比(ACLR)和IMD)。DUTS接收器的生产测试特性规范包括接收灵敏度,最大输入电平,相邻信道选择性,阻塞,虚假响应和IMD [1]。

5G RF サブシステムを搭載した自動検査装置(ATE)テスターとツーリング

最近,Teradyne,National Instruments和Cohu最近公开发布了他们成熟的吃的升级路径。AMKOR利用ATE的RF子系统硬件和软件仪器基础架构来测试生产工厂的客户产品。

ATE供应商通常架构架构仪器资源的通用超集配置,以便客户测试应用程序开发。任意波形发生器(AWG),数字化器(DGTS),LOS,滤波器,放大器,音调组合器,传输信号分路器,接收信号交换机,以及它们宽带宽和动态操作范围的折衷和动态的操作范围当前必须考虑的权衡每位客户的新5G RF应用程序。从仪器设计的特定应用频率和振幅处的相位噪声对误差矢量幅度(EVM)测试有直接影响。在100kHz和-10dB或更好的偏移中的相位噪声或更好的是在5G的连续波(CW)频率下是可接受的(典型的)。在典型的宽带客户产品应用中,需要切换频率和幅度。切换时间影响整个测试列表执行时间。具有最小切换时间的测试人员是生产测试中最有效的。图6示出了ATE框图。

Figure 6:简化的ATE框图。

Custom tooling (probe cards and/or load boards) must be developed to help route tester resources to devices, pins, or bumps. For wafer probe services, probe card vendors deliver probe pin technologies. For 5G RF carrier frequencies that are above 50 GHz, the challenges include impedance matching and pin to pin and site to site signal isolation. For packaged parts, load board, socket, and socket-pin technology vendors deliver pin technologies. For 5G RF carrier frequencies, challenges are similar to the ones described for probe pins. Acceptable levels of insertion loss (S-parameter S21) at these frequencies are typically no more than -10 dB and return losses (S11) over the frequency range are typically better than -10 dB. Acceptable levels of pin-to-pin isolation for typical applications are better than -45 dB over the range of frequencies.

RF performance and accuracy specifications are guaranteed by the supplier to the test head signal delivery interface. The tester supplier develops and delivers calibration systems (hardware and software) to calibrate, verify, and diagnose performance within documented specifications. RF instruments’ accuracy specifications are sensitive to temperature fluctuations. In most cases, a ±5°C (or tighter) change in temperature triggers the instrument’s self-calibration routines. Power, signal (digital, analog/RF), and clocks require moving the calibration plane from the test head to the device pin. This path includes the traces on the probe card or load board. We have a unique benefit of either employing de-embedding techniques and using loopback or custom-developed Short, Open, Load, Through (SOLT) structures to help deliver the required RF signal accuracies to the device under test. Developing custom standards for calibration in most cases requires additional efforts, however, with in-house package designs, the avenue does exist. In most cases, golden loopback DUT techniques have been sufficient to achieve the desired accuracies.

Assembly-Test Attach

我们的装配和测试部门密切合作,使5G RF工程开发能够进行生产测试。好处是从同一工厂位置提供的完整组装和测试交钥匙解决方案。5G封装在包装和天线上提供天线(AIP / AOP)SIP是2018年7月的首次由Amkor制作,并在2019年的公共新闻稿中宣布[3]。

随着装配和包装技术的最新进步,RFIC,如5G收发器和RF前端(RFFE)设备,可以在包装中嵌入天线。类似地,包装(SIP)设备中的系统具有相同的相关组件,如处理器,存储器,RFIC外设,包括功率放大器,低噪声放大器,相位阵列和IC包内的天线结构的离散组件[4]。天线形成前端的关键组件,并且需要调谐特定频带的操作。如今所定义的,今天正在设计的5G NR FR2兼容客户产品正在进行于特定操作频段的性能调整[1]。数据密集型应用可能需要在包装中打包多个无线电,因此需要每个频带调谐的多个天线。

All production testing of previous and present generations of RF devices has been conductive. RF I/O from and to the DUT are electrically connected with impedance-controlled paths over cables and shielded printed circuit board (PCB) micro-traces to the tester’s RF instrumentation. As described above, all ATE suppliers developing 5G RF test solutions include a conductive RF coaxial interconnect. To enable high-volume production testing of packages with an embedded antenna, the test methodology requires an interconnect that can transmit or receive RF energy with minimal and controlled signal loss. Antenna transmission theory [7], requires minimal spatial separation between the transmitter and the receiver. This separation depends on the carrier frequency. The number of RF I/O channels and multisite test requirements add to the production test complexity. The test options that are presently being explored, include patch and horn antennas, beamforming ICs (BFICs), embedded directional couplers, and waveguides. None of these solutions is high-volume manufacturing friendly nor are they scalable as the number of antenna increases. This is primarily due to the physical space requirement in the handler at the tester interface.

IDMS一直在架构设计结构,允许卓越(DFX)模式的Loopback设计,以帮助简化和生产经济的生产测试设备要求。虽然嵌入在包内的天线提供增加的小型化和整体集成,但它确实带走了用于载波频率的新5G NR操作带的应用程序的最终性能调整的灵活性。该公司继续与供应商和客户合作,解决生产测试的超空气(OTA)测试挑战。

付加価値の提案

大きく分けると、テストモデルには主に2つのものがあります。一つ目は、お客様がすべてのテスト内容を管理し、5G RF テスト機器のコンサインなどを行ってAmkorに製造を委託するモデルです。二つ目は、量産テストを可能にするために、当社がお客様の要望に応じたエンジニアリングサービスを提供することです。この場合、弊社のテスト開発チームはお客様と密接に連携し、お客様のテスト開発エンジニアリング(TDE)要件のカスタムニーズに対応します。付加価値 TDE サービスの例としては、以下のものがありますが、これらに限られるものではありません。

  • 最適な5G 対応テスターの選択、
  • 最適なプローバやハンドラーの選択、
  • 特にマルチサイトの量産テストのために、テスターのリソースを適切に割り当てができる最適な5G テストツール(プローブカード、ロードボード)の設計、
  • Developing and debugging production test programs, test patterns, and test waveforms per the customer’s functional test specification,
  • 製品認定、
  • 制品特价検查の,
  • 产量优化,低产失效分析和产品设计反馈。(例如,故障分析可以例如需要X射线或去层压以确定制造和组装包装缺陷的根本原因。),
  • 完成品も効率的に取り扱いできるカスタムのバックエンドフロー。

The RF test development engineering group has significant experience developing test solutions and test content for previous and present generations of RF technologies and continues to build upon this expertise to solve 5G test challenges described here. The group is actively engaged in creating and proposing test solutions for base station and mobile 5G RF products in both FR1 and FR2 RF spectrum. These test solutions make use of the 3GPP standard-compliant ATE hardware and software test tools described above.

多年来内部生产测试过程已经成熟,并允许实施制造(DFM)规则设计为5G RF生产测试。收集,分析和保留5G RF生产试验的制造测试结果对于对测试方法,流动和内容的增量改进至关重要。在特定情况下,测试工程师为IC设计和制造工艺工程提供有价值的反馈。建立了5G RF测试结果的统计箱限制(SBL)在测试设备船队中为多射频测试结果可以帮助识别系统的设备相关的虚假故障,并帮助消除这些因素。这确保了最佳的测试设备利用率并提高了整体生产吞吐量。

客户的一部分优惠都有具有临时上市时间(TTM)目标的产品,对知识产权(IP)污染和安全性敏感。成熟的系统和流程到位,以处理所有这些客户的担忧。

AMKOR生产测试一直在准备测试未来几年预计的大量5G产品。这包括预期用户设备(移动设备)增长的5G基站和基础设施设备。

サマリー

5G RF生产测试业务的规模很大,迅速增长。我们的生产测试团队一直与装配包装,ATE供应商和客户密切合作,以确保整体5G RF生产测试服务are made available to meet and exceed all test capability and capacity challenges.

参考資料

  1. 3GPP.TS 38.101-1 V16.1.0(2019-09)。
  2. 宽带射频架构选项 - Peter Delos,Analog Devices.
  3. amkor设备包
  4. Antenna In Package/Antenna On Package
  5. amkor天线包装 -文章.
  6. Amkor Packages – Press Release 2019
  7. Fresnel Far Field Regionor天线理论

著者

老主任Vineet Pancholi测试技术kor Technology, Inc. in Tempe, AZ. Vineet joined Amkor in January 2019 and currently leads test technology development for 5G RF and high-speed digital production test methodologies. Before joining Amkor, Vineet worked in test development at Microchip Technology. Prior, he spent 19 years at Intel in a variety of test roles, including tester supplier management, test technology development (burn-in, final and system level test) and RF tester architect. Vineet holds a patent on semiconductor device testers and has earned master’s degrees in physics and electrical engineering from Arizona State University.